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Abstract-Buoyancy--Marangoni convection in a cavity with side heating has been studied analytically 
and numerically in superposed immiscible liquid layers with a free surface. The analytical results (based 
on an assumption of infinite aspect ratio) indicate that four different flow patterns are possible and that 
these results may be anticipated on the basis of the introduction of a new parameter which represents the 
combined effects of Marangoni forces acting at the interface between the two liquids and at the free surface. 
It is shown further that the new parameter is a unique thermocapil~ary quantity which influences the 
convection in the lower layer. For finite cavities, some numerical results on the mutual influence of the two 
layers have been presented. The numerical results obtained near the centre of the cavity are in good 

agreement with the results from the analytical model for sufficiently large aspect ratios. 

INTRODUCTION 

THERMOCAPILLARY convection in superposed immis- 
cible liquid layers has recently begun to attract the 
attention of researchers due to its importance in many 
natural and industrial processes. Some industrial 
applications that involve the~ocapillary forces are 
surface melting and alloying techniques using high 
power lasers, processing of ceramics and semicon- 

ductors that may frequently involve a molten and a 
gaseous phase. One such important application that 
has been commercially introduced, is the elimination 
of evaporation of volatile components and a reduction 
in thermal convection of a liquid melt by encap- 
sulation with a protective molten material. This has 
resulted in a significant improvement in the quality of 
the final product used for the manufacture of 
semiconductors. 

When two immiscible liquids are superposed in a 
rectangular cavity with di~erentially heated end walls, 
the horizontal temperature gradient induces con- 
vection due to density differences while providing an 
independent mechanism for its initiation. However, 
the effect of surface tension forces at the interface and 
at the free surface also plays an important role in the 
convective behaviour, since it influences the mech- 
anical coupling between the two layers. 

To provide an evaluation of the fundamental mech- 
anism of natural (that is, gravity driven) and Maran- 
goni convection, experimental and theoretical inves- 
tigations in idealized geometries (rectangular cavities) 
has been reported [I-4] with deferentially heated side 
walls. Oosthuizen and Paul [S] reported on an inves- 

tigation into the steady state free convection heat 
transfer results in a closed, square container filled with 
a liquid and a gas based on numerical simulations. The 
transport phenomena in horizontal annuli formed by 
two circular cylinders and filled with two immiscible 

fluids was studied by Projahn and Beer 161. 
Villers and Ptatten [7] reported the results of a 

theoretical study based on a simple analytical model 
for a horizontal closed cavity of infinite aspect ratio 

B (B = L’IH’, H’ being the height and L’ the width 
of the cavity). Wang et al. [8] presented a theoretical 
study based on a similar analytical model for BCnard- 
Marangoni heat transfer with constant heat flux and 
obtained the same results as those of Villers and 
Platten [7] for predicting the number of convective 
cells. The present authors [9] have numerically inves- 
tigated Buoyancy-Marangoni convection in a finite 
cavity with side heating. Steady state solutions for the 
velocity and thermal fields have been obtained in the 
laminar regime by solving the complete two-dimen- 
sional Navier-Stokes and energy equations using the 
spline integration method. 

Pure thermocapillary convection in two immiscible 

fluids has been studied numerically by Crespo et al. 
[IO], however their results fail to agree with the ana- 
lytical sotution attributed to Doi and Koster (see Liu 
et al. [ 1 I]), except for the case ZMa, = Ma,. Liu er al. 

[ 111 more recently investigated (also numerically) the 
convective flow induced by buoyancy and interfacial 
forces in a rectangular cavity of aspect ratio B = 2 
containing two layers of immiscible fluids. They pro- 
vide analytical expressions for the horizontal velocity 
for the two cases (rigid or free top surface) for the 
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NOMENCLATURE 

aspect ratio of cavity, L//H’ 

Biot number, hH’/k 

gravitational acceleration 
height of the lower layer 
height of the upper layer 
height of cavity 
fluid heat transfer coefficient 
fluid thermal conductivity 
length of cavity 
Marangoni number, equation (9) 
Nusselt number 
Prandtl number, ,u/a 
Rayleigh number, gbH’3( T” - T:)/pa 

time 
dimensionless time, t’a/H” (* signifies 

steady state almost attained) 
temperature 
temperature of vertical hot wall 
temperature of vertical cold wall 

T dimensionless temperature 
u, 13 dimensionless velocity components: 

ui = u:H’/x ,, t:, = dH'/cr , 
u’, u’ dimensional velocity components 
X, y dimensionless Cartesian coordinates. 

Greek symbols 

2, thermal diffusivity 

B, coefficient of thermal expansion 

?j H:/H’ 

K dynamic viscosity 
v ’ kinematic viscosity 

; 
surface tension 
dimensionless stream function 

R dimensionless vorticity. 

Superscript 
relative quantities (layer 2 to layer 1). 

case when the horizontal temperature gradient is 
unity. 

Evidently for physically realistic cases, that is cavi- 
ties with finite aspect ratios, the validity of this model 
is restricted to the region which is in the immediate 
vicinity of the cavity center. Even then, for cavities 
whose aspect ratios are not sufficiently large, the end 
effects will begin to influence the central flowfield 
causing significant departures from one-dimensional 
behaviour as will be seen later. 

It is therefore not surprising that the analytical 
model provides a qualitative prediction for the flow 
and temperature fields only near the centre of the 
cavity with the proviso of a large enough aspect ratio B. 

This effect may probably be the reason why the 
values of velocity at the interface and at the free sur- 
face obtained by Liu et al. [I l] (for B = 2) differ from 
the analytical solutions for Ma, = 2Ma,, and even for 
Mu, = 2Ma,, except for smaller values of Rayleigh 
and Marangoni numbers. Furthermore, their com- 
putational temperature gradient at the centre of the 
cavity was probably not equal to unity even though 
they tried to impose it indirectly by using a ‘perfect 

conductor’ boundary condition at the upper and 
lower horizontal walls. 

The oscillatory instability in thermocapillary con- 
vection has been studied [I221 51 for the case of a free 
liquid-gas interface, since such oscillatory convection 
is highly undesirable for many technical processes, 
e.g. for crystal growth. However, transient solutions 
of combined buoyancy and thermocapillary con- 
vection in superposed immiscible liquid layers have 
not yet been reported. 

The present investigation is devoted to an analysis 
as well as a numerical simulation of the steady flow 
induced in a two-layer system of immiscible liquids 

with an ‘open’ free surface under adiabatic or mixed 

boundary conditions. The convection is driven by the 
buoyancy as well as by the surface tension forces 
acting at the interface and at the free surface. Any 
deformations of the interface and the free surface have 
been considered negligible in the present study. A 
simplified analytical model for a cavity with infinite 
aspect ratio B has been developed for the case of an 
adiabatic top surface. Analytical expressions for the 
stream function, the horizontal velocity and for the 
temperature have been derived. For finite cavities, 
some numerical results on the mutual influence of the 
two layers have been presented. The flow and thermal 
fields have then been investigated in the laminar 
regime by solving the complete two-dimensional 
unsteady Navier-Stokes and energy equations using 
the spline integration method [l&22]. The numerical 
results obtained near the centre of the cavity are in 
good agreement with the results of the analytical 
model for sufficiently large aspect ratios B. 

Finally, the influence of any heat transfer at the 
upper free surface on the convective flow and on the 
temperature field have been studied by defining a Biot 
number, and the results presented for mixed boundary 
conditions at the free surface. 

GOVERNING EQUATIONS 

Thermocapillary convection which is induced by a 
combination of density differences in a gravitational 
field and by surface tension gradients, is governed by 
the continuity equation, the two-dimensional Navier- 
Stokes equation and the energy equation for both 
fluids (i = I or 2). The non-dimensional equations in 
streamfunction and vorticity form (using the Bous- 
sinesq approximation for the body forces) may be 



written : the continuity of temperature and velocity at the inter- 

(1) 
face (y = q,) are : 

T, = T2, aT,=$3 
ay ay 

Y,=Y’,, u,=u2, and v,=v,=O (7) 
(2) 

az~, a2y2 
For the case of heat flux through vertical opposite 
walls, equation (2) is replaced by : 

7=Payz ay- -Ma,g 

or 

R, = $l,+Ma,~ (8) 

where Ma, is the interface Marangoni number and 
and Ma, is the Marangoni number for the upper layer and 

aa; (T; - T,‘)H’ 
Ma,= -E 

A44 
(9) 

with e being the surface tension. 

V:=&+C 

It may be noted that in immiscible two-fluid how 

aY2 
(4) problems, the non-dimensional parameters are n,, 

Ra,, &, Pr,, Pr2, 6 = a21u,, P = IJ~/~,, E = k,lk,, Ma, 
and Ma2. Ma, and E arise from the non-dimensional 

ay’, ayi boundary conditions at the interface. 

u’=ay’ vi= -ax 
where E = c1Ju, and L = k,/k,. APPROXIMATE SOLUTION 

The thermocapillary convection in superposed lay- 

Boundary conditions ers is characterized by the specification of vi, Ra,, Ra2, 
The boundary conditions for the problem are : Pr,, Pr,, I?, j, /;, Ma, and Ma2. The problem may 

for x = 0 be significantly simplified by the approximation of 

u,=vi=Y,=O, Qi= -5, and T,= -0.5 

parallel flow as reported by Villers and Platten [7] and 
Wang et al. [8] for a closed horizontal cavity of infinite 
aspect ratio B. Since this implies that the lateral heat 

for x = B sources are located at infinity, the only velocity com- 

u, = v, = Yi = 0, !I& = -s, 

ponent present in the region of interest would be hori- 

and T, = 0.5 zontal. The flow is then purely one-dimensional and 
the (horizontal) velocity component varies only in the 

fory=O vertical. The streamfunction and the temperature field 

azy’, aT, 
may be given by 

u, =v, =Y, =o, R, = -~ ay2 7 
and ~ = 0 

ay Yi = Y,(y) and Ti = Cx+ei(y), 

(6) where C is a constant representing the unknown tem- 

andfory= 1 
perature gradient in the x direction. 

We now define the ratio of certain physical quan- 
q 

r2=Y2=0, R2=ciMa2z, 
tities evaluated in the two layers as first introduced by 
Villers and Platten [7] : 

and !$ = -Bi(T,- Tdmb) (6’) 
a = [Pm21 21wf21 I (10) 

and 

where Ta,,,b is the ambient dimensionless temperature. 
In the present study, an ambient temperature 

e, = [P/w2Iw~l1’ (11) 

T amb = (T, + T,)/2 = 0 was used. Most computations For the present case, if use is made of the above 

were performed for Bi = 0 ; however some cases where dimensionless parameters with ij = q2/q,, equation 

Bi # 0 when surface heat exchange was present have (10) and equation (11) become : 

also been computed and the results presented. 
Neglecting any deflection of the interface between 

Q. = EjiRa#/Ra, 

the two liquids, the boundary conditicns maintaining and 
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P, = wil. 
Q is related to the relative importance between the 
buoyancy forces in the upper and lower layers, and 
Q,, is related to the viscous forces. 

Thus equation (2) may be simplified to 

Ra,C. 

The following expressions are then obtained : 

(12) 

Y* = qgy’(y+q*) L y’*+(A+q*)y’ 

and 

G2 
+42(A+v*)- y$ 

1 
(13) 

(14) 

(15) 

with 

y’ = (1 -y) 

I =~[3s~i--21i(31i4,+5~~)-~*G*] 
I 

A = - ~(2~~~+,llin+3sll:osrl,c,) 
7 

and S = Q&j*, P = (4rj+3$, G, = 12ccpMa,/Ra,, 

G* = 24Ma*/Ra, and Ma* = Ma, -O.SapMq. 

Here G is related to the inverse of the dynamic Bond 
number which is defined as Bo = g(p, -p&Y’*/a. 

The velocity may be written : 

Ra,C 
u, = 14[4y3-2yq:+yib(3y-2q,)] (16) 

Ra,C 

u2=w 
-S(4y’?-t$ 

-SA(3y’*-i&-; (2y’-12) 1 . (17) 

Evidently when sidewall heating is considered, the 
above expressions are independent of /; This is due 
to the assumption that the flow is then purely one- 
dimensional and steady with the (horizontal) velocity 

component varying only in the vertical while the two 
horizontal walls at the top and bottom are considered 
insulated. In this case, the interface in effect behaves 
as an adiabatic boundary. For a finite cavity, the 
above assumptions are invalid and significant depar- 
tures from the solutions based on simplifying assump- 
tions may be expected. 

It is interesting to note that the expressions of equa- 
tion (12) and equation (I 6) for, respectively, ‘I”, and 
u, are identical in form with the corresponding 
expressions for the rigid top [8, 91. Of course the 
functional dependence of 1 on G*, S and 3 in the 
expressions will be different. 

NUMERICAL PROCEDURE 

Since the thermocapillary convection consists of 
two superposed immiscible liquid layers and one 
influences the other through the interface conditions, 
the treatment of these conditions in the computational 
procedure is of extreme importance. In this respect, 
the spline fractional step procedure (SMFS) [19] is 
an improvement over existing methods. The essential 
advantage of the technique for the present problem 
lies in the fact that boundary conditions containing 
derivatives may be easily incorporated into the solu- 
tion procedure since values of first or second deriva- 
tives may be evaluated directly and maintain the same 
degree of accuracy when the algorithm that represents 
the spline approximation to the governing equations 

(l))(4) is constructed. The governing matrix system 
obtained is always tridiagonal containing either func- 
tion values or the first derivatives at the grid points. 
The SMFS schemes and the boundary conditions in 
discretized form may be obtained in direct fashion 
from the procedure detailed in earlier articles [9, 20- 
221 and will therefore not be described further. 

The time dependent nonlinear coupled partial 
differential equations were solved by considering a 
31 x31, 41 x41 or 81 x41 grid depending on the 
different values of aspect ratio B. In order to accu- 
rately describe gradients that are expected to be steep 
in the boundary layer regions, a non-uniform grid in 
both the x and y directions was used. Accuracy of 
the solutions were verified by grid refinement. All 
computations were performed on a 486 based IBM 

compatible PC. 

RESULTS AND DISCUSSION 

Bi = 0 

Pure Marangoni convection. Thermocapillary con- 
vection was observed under reduced gravity during 
the Spacelab Dl mission as reported by Ben Hadid 
and Roux [ 151. In the absence of gravity, the interface 
tension caused by the horizontal temperature gradient 
is the unique source driving the thermocapillary con- 
vection. 

Under these conditions, the expressions equations 
(12)-(17) above, simplify to the following forms : 
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and 

and 

This resuh clearly indicates that the velocity and 
the temperature distributions in the lower layer 
depend only on the combined Marangoni number 
Ma* and the convective activity in the lower layer is 
weakened Bs the absolute value of Ma* diminishes. 
For the particular case of Ma* = 0, theoretically no 
fluid motion will arise in the lower layer, and so any 
heat transfer has to occur by pure conduction, the 
resultant temperature expression being T = Cx. 

This result is of some practical significance since 
in fact (as mentioned earlier), eliminating convective 
fIow in the lower layer is of interest in producing 
high quality materials obtained from diffusive crystal 
growth in encapsulated electronic melts. However, in 
order to realize this condition, i.e. diminishing Ma* 
(Ma* = Ma, -O.S@Ma,), an appropriate choice of 
the corresponding parameter values must be made. 
For example, values of hlaz, p2 and a, may be chosen 
in order to minimise the value of Ma*, this being 
a more general parameter describing the convective 
activity in the lower layer. 

Figures l(a) and (b) indicate, respectively, the 
comparisons between analytical and numerical sol- 
utions for the normalized horizontal velocities and 
stream function profiles (the dashed-lines represent 
numerical solutions) at the cavity midplane for 
different interface and free surface Marangoni num- 
bers. The combined Marangoni numbers however, 
Ma* = 0 and ij = n2/q1 = 0.6, B = 5, o? = 1 and 

FIG. 1. (a) Comparison between analyti~l and numerical 
normalized horizontal velocity profiles at the cavity midplane 
(Ma* = 0). (b) Comparison between analytical and numeri- 
cal stream function profiles at the cavity midplane 

(Mu* = 0). 

Q, = 2 have been maintained the same. The charac- 
teristic velocity used for all the graphs was 
U* = 100u/(MazC), whiie Y* = l~Y~(~a~~) (all 
figures with the superscript * omitted), where C rep 
resents the temperature gradient. The present results 
used the temperature gradient at the centre point of 
the interface for the value of C. In fact, at the 
midplane, the variation of temperature gradient is 
very small, the mean value of the temperature gradient 
at the midplane deviating less than I % from its value 
at the centre point for the present examples with lower 
Rayleigh numbers. The numerical results are in good 
agreement with the analytical solution. Only when 
Ma? > IO3 does the numerical deviation become visu- 
ally discernible in the lower layer. This is due to the 
end wall effects. As expected, this deviation decreases 
with increasing aspect ratio. 

According to equation (18), only one thermo- 
capillary cell is to be expected in the lower layer 
and the sense of the circulation depends on the sign 
(positive or negative). For example, for Ma* < 0, the 
fluid at the interface tends to flow from the cold to 
the hot wall while for Ma* > 0 the opposite is true. 

The number of convection cells in the upper layer 
may be either one or two, depending on the existence 
of the roots to the following equation (from equation 
(19)) within the interval (0, q2) : 

or 
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FIG. 2. Typical computed streamlines and isotherms with different cells for C = 5 = 1, i = 1.2 and 0 = 0.6. 
(a) Ma* = - 100, Mu2 = 50, (b) Ma* = - 100, Ma2 = -70; (c) Mu* = 200, Ma2 = 200; (d) Ma* = 0, 

Ma2 = 200. 

y, = _ 

It is evident that, if the values of Mu* and Mu* 
possess different signs (i.e. Ma* > 0 and Mu* < 0 or 
Ma* -e 0 and Ma* > 0), there is only one convection 
cell in the upper layer with a direction of rotation that 
is contrary in sense to that in the lower layer. In fact, 
this fluid flow pattern may be maintained until 

_ _ 28Ma* 

Ma2 = (4+3Q,,)f’ 

However, when 

2ctMa* 
Ma, > (4+3Q,)vi and Ma* > 0 

or when 

2ciMa* 

Mu2 < (4+3Q,)q 
and Ma* < 0, 

there are two cells in the upper layer. 
Figures 2(a)-(d) present typical computed stream- 

lines and isotherms with different cells for various 
values of Ma* and Ma, the purpose of which was to 
illustrate the influence of these parameters on the flow 
field. The numerically calculated maximum and mini- 
mum stream function values ‘I”,,, and ‘I”,,, are also 
indicated on each graph for reference. In these figures 

the streamlines are equally spaced between Y’m,, and 

Y’,,“. 
Figure 3(a) is a comparison between the analytical 

and numerical normalized horizontal velocity profiles 
at the cavity midplane for different interface and free 
surface Marangoni numbers with q = 0.6, B = 3, 
OS = E = 1 and jj = 1.2. Again, the numerical results 
agree satisfactorily with the analytical solutions. 

The corresponding normalized temperature profiles 
with T* = 1000T/(Mu2C2) are shown in Fig. 3(b). 
Compared with the analytical solution, the computed 
temperature profiles are displaced along the interface 
velocity direction due to the effects of the end walls. 
This implies that the flow adjacent to the interface 
functions to transport hot (or cold) fluid to the center 
from the sides. The stronger the normalized horizontal 
velocity at the interface, the more evident is this dis- 
placement as shown in the figure for the case where 
Ma2 = -200 and Ma, = 50. 

Figures 4(a) and (b) illustrate the influence of 
the aspect ratio B on the horizontal velocity and 
temperature profiles at the midplane maintaining 
Ma* = 0, Ma, = -600, p = 1.2 and q = 0.6 with 
values of B = 2,3,5, respectively. Turning to Fig. 4(a) 
it may be seen that in this specific case when B > 3 
(for each layer, this implies a ratio greater than 6), 
the variation of the horizontal velocity profile at the 
midplane is in general, very small so that the solution 
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li (b) -3.0 -2.0 -‘.oT,~p,,~~u,,,2;r(o,~o 4.0 ! 

FIG. 3. (a) Comparison between analytical and numerical 
normalized horizontal velocity profiles at the cavity midplane 
for different Mu* and MaZ (6 = 0.6, B = 3, Or = I and 
Q, = 2). (b) Comparison between analytical and numerical 
normalized temperature protiles at the cavity midplane (with 

the same conditions of Fig. 3(a)). 

at the centre of the cavity may be considered as cor- 
responding to the solution obtained using the sim- 
plified analysis for infinite aspect ratio. For the tem- 
perature profile displayed in Fig. 4(b), the difference 
between the numerical results and those of the analysis 
is still visible even for an aspect ratio of five. In fact, 
at higher Marangoni numbers, test computations 
revealed that, even when B > 5 (which results in a 
horizontal temperature gradient at the midplane 
which is approximately constant), the above differ- 
ence remained quite noticeable. 

Buoyancy-thermocapillary drivenflows. Typical two 
layer Buoyancy-Marangoni convection flow patterns 
for various Rayleigh numbers and Marangoni num- 
bers are presented in Fig. 5(a)-(g). These com- 
putations have been realised at smaller Rayleigh and 
Marangoni numbers in order to illustrate the influence 
of the parameters on the flow field. The number of 
cells seen in each layer depend on the values of Qe, Q,, 
Ma*, Ma, and 4. For this case, Ra, = 103, Qz = 0.5, 
E = 1, Q,# = 2, ij = 0.6 and B = 3 have been used. 

If thermocapillary forces at the interface and at the 
free surface are for a particular case, negligible, i.e. 
Ma, = Ma* = 0, the convection is driven purely by 
buoyancy. In this case, following the definition of 
equation (12), for i <: Q. < 2+ Q, there are two cells 
in the lower layer. As a special case, when Qa = 213 
there is only one cell in each layer with the same 
direction of rotation as shown in Fig. 5(a), and the 

000 

(b) 

I 

-do -i.o 0.0 

Horizontal velocity u(O,$ 

-1.0 -0.0 0.0 0.5 1.0 

Temperature T(O,y) 

1 
1.5 

FIG. 4. (a) Influence of the ratio B on the horizontal velocity 
profiles at the midplane (Ma* = 0, Mq = -600 and 
Q, = 2 and rj = 0.6). (b) Influence of the ratio B on the 
temperature profiles at the midplane (Ma* = 0, 

Mu2 = -600 and Q, = 2 and ?j = 0.6). 

horizontal velocity at the interface is equal to zero. 
This may be immediately verified. 

Figures 5(b), (c) illustrate that the secondary 
circulation due to the effect of the interfacial ten- 
sion will be felt in the upper as well as the lower 
layer for Ma* = - 50, Ma2 = 200 and Ma* = 100, 
Ma, = 200, respectively. Figures 5(d), (e) illustrate 
for Ma* = -200, Ma, = 10 and Ma* = 10, 
Ma, = - 100, respectively, that the secondary cell 
develops fully while the primary cell is weakened and 
disappears in the central part of the cavity, so that the 
circulation in each layer is of opposite sign. These 
results are in good agreement with the analytical pre- 
dictions of equation (12) and equation (13). 

The five types of convective flow as illustrated in 
Figs. 5(a)-(e) have been observed in a rectangular 
cavity containing two layers of immiscible fluids with 
a rigid upper surface [7, 81. However, when the upper 
surface is free, the surface tension forces begin to affect 
the flow in the upper layer resulting in some complex 
flow behaviour as shown in Figs 5(f), (g). Figure 5(f) 
indicates the presence of two cells in each layer for 
Ra, = 105, Q, = 1, Ma* = 0 and Ma* = - 1200 while 
in Fig. 5(g) there are three cells in the upper layer with 
only one cell in the lower layer for the case where 
Ra, = 105, Q. = 2/3, Q,, = 1, Ma* = -3000 and 
h4az = -4000. These are aIso in agreement with the 
analytical predictions. 

Figures 6(a) and (b) present the horizontal velocity 
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(a) 
G- 0.123 

0.279 

cc) - o’046m Th 

0.333 

(4 

J 
- 0.42 

1.37 
0.072 

3.15 

- 2.i6 

2.68 

- 1.27 

1.34 

FIG. 5. Typical Buoyancy-Marangoni convection flow patterns for (a)-(e): Ra, = lo’, ii = 1, Q,‘ = 2, 
q = 0.6 and B = 3. For (f)-(g): Ra, = lo’, Cc = 1, Q, = 1, ij = 1 and B = 5. (a) Q, = 2/3 and 
Ma* = Ma2 = 0, (b) Q. = 0.5, Ma* = - 50, Ma, = 200; (c) Q. = 0.5, Ma* = 100, Ma, = 200; (d) 
Q, = 0.5, Ma* = -200, Ma2 = 10; (e) Q. = 0.5, Ma* = 10, Ma2 = -100; (f) Qz = 0.5, Ma* = 0, 

Ma2 = - 1200 ; (g) Q, = 2/3, Ma* = - 3000, Ma2 = -4000. 
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Horizontal velocities u(O,y) 

(a) 

(b) 
FIG. 6. (a) Horizontal velocity profiles at the midpiane cor- 
responding to Figs. 9(a)-(e). (b) Horizontal velocity profiles 

at the midplane corresponding to Figs. 9(0-(g). 

Temperature T(O,y) 

(b) 
FIG. 7. (a) Influence of the value of ji on the horizontal 
velocity protile at the midplane (Q. = 2/3 and fi = 0.5, 1.0 
and 2.0). (b) lnfluenee of the value of E OR the temperature 

profile at the midplane (Q. = 213, Q, = 1; = 1). 

X 

(b) 
FIG. 8. (a) Temperature distributions at the top, interface 
and bottom of the cavity for Ra, = lo', Q, = 213, Mu* = 0 
and Ma, = - 1000. (b) Vorticities at the interface, the free 
surface and the bottom for Ra, = 105, QY = 2/3, 

Mu, = -5000 and Ma> = -4000. 

profiles at the midplane corresponding to the above 
Row patterns that go with Figs. 5(a)-(e) and Figs. 
S(f)-(g), respectively. The same figure highlights the 
influence of the parameter Ma* and Mu2 on the vel- 
ocity profile. The solid lines represent the values 
obtained from the analytical expressions equation 
(16) and (17). These are also in agreement with the 
analytical prediction. However it may be noted that 
for high ~arangoni numbers, Ma* = -3000 and 
Ma2 = -4000, at the free surface the horizontal vel- 
ocity is visually different to the analytical solution as 
shown in Fig. 6(b). 

It is not surprising that, at the cavity midplane. the 

value of the horizontal velocity, u i(_y = 2~ ,/3) in the 
lower layer is virtually inde~ndent of Ma* as seen 
in Figs. 3(a) and 6(a), (b). This conclusion may be 
deduced from the results in equation (16). In fact. for 
all cases, when the dimensionless vertical coordinate 
y takes on the value 2~,/3, the terms containing Mu* 
vanish. 

Figure 7(a) illustrates the influence of the value of 

ji on the horizontal velocity profile at the midplane. In 
this numerical experiment, QLI = Z/3 was maintained 
while /i was given values of 0.5, 1 .O and 2.0. The results 
compare favourably with the analytical solution. The 
following values for the parameters have been 
tentatively used : Ra, = 103, Ma, = .A& = 0, 
Pr,=Pr~=lO and E=&=l with B=3. The 
numericaf resutts indicate that in the lower layer the 
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FIG. 9. Streamlines and isotherms for Ma* = 0 and Ma, = -200 with Q, = 2 and )1= 0.6 at Bi = 0,2, 5 
and 20. 

velocity distribution is relatively unaffected. However, 
in the upper layer the velocities vary by a factor of 
l/ii. This coincides with the analytical predictions, 
since, in this case, there is a coefficient l/j in equation 
(15). The present numerical results are, therefore, in 
good agreement with those of the analytical model. 

Figure 7(b) illustrates the influence of the value of 
Cc on the temperature profile at the midplane with 
QZ = 213 while Q, and I? are all maintained at unity. 
The other parameters used are the same as in Fig. 
7(a). It is noted that in the lower layer the distribution 
of the computed temperature is relatively unaffected. 
However, in the upper layer the temperatures vary by 
a factor of l/E. This coincides with the analytical 
preditions for Ma, = 0. 

Figure 8(a) presents the temperature distributions 
at the top, interface and bottom of the cavity for 
Ra, = 105, Q. = 213, Ma* = 0 and Maz = - 1000 
with Q, = Cc = k = 1. The temperature at the free sur- 
face in the upper layer is higher than that at the inter- 
face, with the interface temperature in turn being 
higher than that at the bottom wall. This is due to the 
convection in the lower layer. It is clear that in this case 
the heat transfer across the interface is from the lower 
layer to the upper layer shown by the negative vertical 
temperature gradient. A detailed discussion along 
similar lines has been presented in an earlier paper [9]. 

Due to the effects of different values for viscosity 
and the added influence of interfacial tension, the 

computed values of the vorticity at the interface are 
in general, not continuous. The vorticities at the inter- 
face, i.e. au ,/a_~ and &,/I!$, as well as at the free surface 
and at the bottom for the same case of Fig. 5(g) are 
shown in Fig. 8(b). These vorticity distributions are 
almost constant with the exception of the region near 
the end walls and at the free surface. 

Influence of Biot number at the free surface 
In general, the heat exchange between the upper 

layer (liquid 2) and the ambient at the free surface 
may be quite weak. However, it was decided to further 
study this influence, particularly near the two 
sidewalls, by performing some additional numerical 
computations. The results indicated that the con- 
vective behaviour in the upper layer is fairly sensitive 
to the heat transfer at the upper free surface. For 
example, considering the case where Ra, = lo“, 
Q. = 0.5, Q,, = 2 and ij = 0.6; when the Biot number 
was set to a value of Bi = 0.1 the horizontal velocity 
at the center of the free surface diminished by about 
12%. 

Figure 9 shows the streamlines and isotherms for 
Ma*=0 and Ma*= -200 withfi= 1.2, Z=F= 1 
and +j = 0.6 at Bi = 0, 2, 5 and 20. Figure 10 
shows the streamlines and isotherms for Ra, = 104, 
Ma* = 0 and Ma2 = -200 with Q. = 0.5, Q, = 2 
and yI = 0.6 at Bi = 0, 2, 5 and 20. 

The corresponding horizontal velocity profiles to 
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0.823 

FIG. 10. Streamlines and isotherms for Ra, = 104, Ma* = 0 and MaZ = -200 with Q. = 0.5, Q, = 2 and 
tj = 0.6 at Bi = 0, 2, 5 and 20. 
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FIG. 11. (a) Dimensionless horizontal velocity profiles at the 
midplane of the cavity (with the same conditions of Fig. 9). 
(b) Dimensionless horizontal velocity profiles at the mid- 

plane of the cavity (with the same conditions of Fig. 10). 

Figs. 9 and 10 at the midplane of the cavity are shown 
in Figs. 11 (a) (b). 

Clearly, the existence of any heat loss at the upper 
free surface (stronger near the sidewall) will result 
in considerable weakening of the convection in the 
central region of the upper layer. This may be con- 
firmed by inspection of Figs. 11 (a) and (b) which 
indicate the horizontal velocities and temperature pro- 
files at the centre of the cavity. As Biot number is 
increased, convective activity is reduced while the tem- 
perature in the upper layer approaches ambient. 

CONCLUSIONS 

Marangoni convection in a two-layer cavity system 

with end walls maintained at a constant temperature 
difference has been studied numerically. An analytical 
solution based on the parallel flow approximation 
has also been presented. The computational results 
obtained agree qualitatively with analytical predic- 
tions when the latter are within their range of validity. 

A new parameter Ma* has been defined that 
uniquely characterises the velocity and temperature 
distributions in the lower layer. In particular, a value 
of Mu* = 0 will result in suppression of convective 
activity in the lower layer under microgravity con- 
ditions, which can have useful applications to crystal 
pulling techniques that employ molten encapsulants. 

A preliminary study of the influence of any heat 
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exchange at the free surface has been initiated. The 
results indicate that as the Biot number increases the 
convection in the central part of the cavity is weakened 
while the temperature in this region approaches the 
ambient value. 

Current work in progress concerns the transient 
behaviour of the initially quiescent state to equi- 
librium and will be reported on shortly. 
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